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A simple explicit example of a Roberts-type dynamo is given in which the � effect of mean-field electro-
dynamics exists in spite of pointwise vanishing kinetic helicity of the fluid flow. In this way, it is shown that
�-effect dynamos do not necessarily require nonzero kinetic helicity. A mean-field theory of Roberts-type
dynamos is established within the framework of the second-order correlation approximation. In addition,
numerical solutions of the original dynamo equations are given that are independent of any approximation of
that kind. Both theory and numerical results demonstrate the possibility of dynamo action in the absence of
kinetic helicity.
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I. INTRODUCTION

The essential breakthrough in the understanding of the
origin of the large-scale magnetic fields of cosmic objects
came with the development of mean-field dynamo theory. A
central component of this theory is the � effect, that is, a
mean electromotive force with a component parallel or anti-
parallel to the mean magnetic field in a turbulently moving
electrically conducting fluid. The � effect, which occurs
naturally in inhomogeneous turbulence on a rotating body, is
a crucial element of the dynamo mechanisms proposed and
widely accepted for the Sun and planets, for other stellar
objects and even for galaxies; see, e.g., �1–3�.

In the majority of investigations, this effect has been
merely calculated in the so-called second-order correlation
approximation, or first-order smoothing approximation,
which ignore all contributions of higher than second order in
the turbulent part of the fluid velocity. Moreover in many
cases attention has been focused on the high-conductivity
limit only, which can be roughly characterized by short cor-
relation times of the turbulent motion in comparison to the
magnetic-field decay time for a turbulent eddy. Under these
circumstances the � effect is closely connected with some
average over the kinetic helicity of the turbulent motion,
that is, over u ·�, where u means the turbulent part of
the fluid velocity and � the corresponding vorticity, �
=��u; see, e.g., �1–5�. More precisely, the coefficient
� for isotropic turbulence turns out to be equal to
− 1

3�0
�u�x , t� ·��x , t−��d�, often expressed in the form

− 1
3u ·��c with equal arguments of u and � and some appro-

priate time �c. Here and in what follows overbars indicate
averages. For anisotropic turbulence, the trace of the � tensor
is just equal to three times this value of �.

These findings have been sometimes overinterpreted in
the sense that mean-field dynamos, or even dynamos at all,
might not work without kinetic helicity of the fluid motion,
that is, if u ·� vanishes. There exist, however, several coun-
terexamples.

First, the mean-field dynamo theory offers also dynamo
mechanisms without the � effect, for which the average of

the kinetic helicity may well be equal to zero. For instance, a
combination of the so-called ��J effect, which may occur
even in the case of homogeneous turbulence in a rotating
body, with shear associated with differential rotation can act
as a dynamo �6–14�. The possibility of a dynamo due to
turbulence influenced by large-scale shear and the shear flow
itself �15–17� is still under debate �18–21�.

Second, in dynamo theory beyond the mean-field concept
a number of examples of dynamos without kinetic helicity
are known. The dynamo proposed by Herzenberg �22�, usu-
ally considered as the first existence proof for homogeneous
dynamos at all, works without kinetic helicity. Likewise, in
the dynamo models of Gailitis working with an axisymmet-
ric meridional circulation in cylindrical or spherical geom-
etry �23–25�, there is no kinetic helicity. We mention here
further the dynamo in a layer with hexagonal convection
cells proposed by Zheligovsky and Galloway �26�, in which
the kinetic helicity is zero everywhere.

Third, it is known since the studies by Kazantsev �27� that
small-scale dynamos may work without kinetic helicity. This
fact has meanwhile been confirmed by many other investiga-
tions; see, e.g., �3�.

Let us return to the mean-field concept but restrict our-
selves, for the sake of simplicity, to homogeneous and statis-
tically steady turbulence. We stay first with the second-order
correlation approximation but relax the restriction to the
high-conductivity limit. As is known from early studies, e.g.,
�1,12,28�, the crucial parameter for the � effect is then no
longer the mean kinetic helicity u ·�. The � effect is in
general determined by the function h�� ,��
=u�x , t� ·��x+� , t+�� or, which is equivalent, by the kinetic
helicity spectrum, defined as its Fourier transform with re-
spect to � and �. In the high-conductivity limit this brings us
back to the above-mentioned results. In the low-conductivity
limit, that is, large correlation times in comparison to the
magnetic-field decay time for a turbulent eddy, the � effect is
closely connected with the quantity u ·�, where � is the
vector potential of u, that is ���=u with � ·�=0. For
isotropic turbulence the coefficient � is then equal to
−�1 /3��u ·�, where � means the magnetic diffusivity of the
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fluid �1,4,5,28,29�. In the anisotropic case the trace of the �
tensor is again equal to three times this value of �. In gen-
eral, u ·� does not vanish in this limit but it is without inter-
est for the � effect. Both u ·� and u ·� are quantities that, if
nonzero, indicate deviations of the turbulence from reflec-
tional symmetry. In the second-order correlation approxima-
tion the ��J effect, too, is completely determined by the
kinetic helicity spectrum �12�.

Beyond the second-order correlation approximation the �
effect is no longer determined by the kinetic helicity spec-
trum alone. In an example given by Gilbert et al. �30� an �
effect �with zero trace of the � tensor� occurs in a nonsteady
flow even with zero kinetic helicity spectrum. Note that
small-scale dynamos may also work with zero kinetic helic-
ity spectrum, but they do not produce large-scale fields.

Interesting simple dynamo models have been proposed by
Roberts �31,32�. In his second paper �32� he considered dy-
namos due to steady fluid flows which are periodic in two
Cartesian coordinates, say x and y, but independent of the
third one, z. When speaking of a “Roberts dynamo” in what
follows we refer always to the first flow pattern envisaged
there �Eq. �5.1�, Fig. 1�. This dynamo played a central role in
designing the homogeneous two-scale dynamo experiment of
Müller and Stieglitz �33–36�. It can be easily interpreted
within the mean-field concept. In that sense it occurs as an
�-effect dynamo with an anisotropic � effect. The flow pat-
tern proposed by Roberts, and in a sense realized in the ex-
periment of Müller and Stieglitz, shows nonzero kinetic he-
licity. In this paper we want to demonstrate that this kind of
dynamo works also with a slightly modified flow pattern in
which the kinetic helicity is exactly equal to zero everywhere
�but the kinetic helicity spectrum remains nonzero�.

In Sec. II we present a simple mean-field theory of Rob-
erts dynamos at the level of the second-order correlation ap-
proximation. In Sec. III we report on numerical results that
apply independently of this approximation. Finally, in Sec.
IV some conclusions are discussed.

II. A MODIFIED ROBERTS DYNAMO

A. Starting point

We focus our attention now on the Roberts dynamo in the
above sense and refer again to a Cartesian coordinate system
�x ,y ,z�. The fluid is considered as incompressible. Therefore
its velocity u has to satisfy � ·u=0, and it is assumed to be a
sum of two parts, one proportional to e��� and the other to
�e, where e is the unit vector in the z direction, and �
=sin��x /a�sin��y /a�. The corresponding flow pattern is de-
picted in Fig. 1. We denote the sections defined by na	x
	 �n+1�a and ma	x	 �m+1�a with integer n and m as
“cells.” In that sense the velocity u changes sign when we
proceed from one cell to an adjacent one. A fluid flow of that
kind indeed acts as a dynamo. Magnetic-field modes with the
same periodicity in x and y but varying with z as sin�kz� or
cos�kz� may grow for sufficiently small values of �k�. The
most easily excitable modes for a given k possess a part
which is independent of x and y, but varies with z.

B. Mean-field theory with a generalized fluid flow

Let us proceed to more general flow patterns which show
some of the crucial properties of the specific flow pattern

considered so far. We assume again that the flow is incom-
pressible, steady, depends periodically on x and y but is in-
dependent of z, and shows a cell structure as in the example
above. More precisely, we require that u changes sign if the
pattern is shifted by a length a along the x or y axis or is
rotated by 90° about the z axis.

Let us sketch the mean-field theory of dynamos working
with fluid flows of this type �partially using ideas described
in our paper �37�, in the following referred to as RB03�.

It is assumed that the magnetic field B is governed by the
induction equation

��2B + � � �u � B� − �tB = 0, � · B = 0, �1�

with the magnetic diffusivity � being constant.
We define mean fields by averaging the original fields

over a square that corresponds to four cells in the xy plane.

More precisely, we define the mean field F̄, which belongs to
an original field F, in any given point x=x0 by averaging F
over the square defined by x0−a	x	x0+a and y0−a	y
	y0+a. If applied to quantities that are periodic in x and y
with a period length 2a, this average satisfies the Reynolds
rules. Clearly we have ū=0.

When taking the average of Eq. �1� and denoting B− B̄ by
b, we obtain the mean-field induction equation

��2B̄ + � � E − �tB̄ = 0, � · B̄ = 0, �2�

with the mean electromotive force

E = u � b . �3�

For the determination of E for a given u the equation for b is
of interest. This equation follows from �1� and �2�,

��2b + � � �u � b�� − �tb = − � � �u � B̄� ,

� · b = 0, �4�

where �u�b�� stands for u�b−u�b.
For the sake of simplicity we consider here only the

steady case. We introduce a Fourier transformation with re-
spect to z, that is, we represent any function F�x ,y ,z� by

FIG. 1. The Roberts flow pattern.
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F�x ,y ,z�=�F̂�x ,y ,k�exp�ikz�dk. If F�x ,y ,z� is real, we have

F̂*�x ,y ,k�= F̂�x ,y ,−k�, where the asterisk means complex
conjugation. We have now

Ê = u � b̂ . �5�

Transforming �4� accordingly, we obtain

���2 − k2�b̂ + �� + ike� � �u � b̂�� = − �� + ike� � �u � B̄
ˆ � ,

� · b̂ + ikb̂z = 0. �6�

We further suppose that B̄
ˆ

is independent of x and y. This

implies that Ê is independent of x and y, too. It is then

obvious that the connection between Ê and B̄
ˆ

must have the
form

Êi = âijB̄
ˆ

j , �7�

where âij is, like Ê and B̄
ˆ

, independent of x and y, but de-

pends on k. Because Êi
*�k�= Êi�−k� and B̄

ˆ
i
*�k�= B̄

ˆ
i�−k� it also

has to satisfy âij
*�k�= âij�−k�.

Clearly âij is determined by u. Since E does not change
on inverting the sign of u, and a 90° rotation of the u field
about the z axis changes nothing other than its sign, the com-
ponents of the tensor âij have to be invariant under 90° ro-
tations of the coordinate system about the z axis. We may
therefore conclude that

âij = a1��k��
ij + a2��k��eiej + ia3��k��k�ijkek �8�

with real a1, a2, and a3. Together with �7� this leads to Êz

= �a1+a2�B̄ˆ z. On the other hand, Êz is equal to the average of

uxb̂y −uyb̂x, and we may conclude from �6� that b̂x and b̂y are

independent of B̄
ˆ

z. This implies a1+a2=0. We may then
write

âij = − �̂��k��
ij − eiej� + i�̂�k�k�ijkek �9�

with two real quantities �̂� and �̂, which are even functions
of k. From �7� and �9� we obtain

Ê = − �̂��k��B̄ˆ − �e · B̄
ˆ �e� − i�̂�k�ke � B̄

ˆ
. �10�

This relation is discussed in some detail in RB03, Sec. V B.
We now restrict our attention to the limit of small k, that

is, small variations of B̄ with z. Then �̂� and �̂ lose their
dependence on k. Denoting them by �� and �, we conclude
from �10� that

E = − ���B̄ − �e · B̄�e� − �e � dB̄/dz . �11�

Equation �2� together with �11� allow solutions of the

form B̄=Re�B̄0 exp�ikz+
t�� with 
= ���k− ��+��k2.
Growing solutions are possible if

����
�k��� + ��

� 1. �12�

We note that, in agreement with the antidynamo theorem by

Zeldovich, 
 vanishes if k→0, that is, if B̄ loses its depen-
dence on z.

C. Calculation of �� and �

For the determination of the coefficients �� and � we
restrict ourselves to an approximation which corresponds to
the second-order correlation approximation. It is defined by

the neglect of �u�b�� in �4�, or �u� b̂�� in �6�. In view of
�� and �, which correspond to the limit of small k, we

expand b̂ and B̄
ˆ

in powers of k but neglect all contributions

with higher than first powers of k. That is, b̂= b̂�0�+kb̂�1� and

B̄
ˆ

= B̄
ˆ �0�+kB̄

ˆ �1�, where of course b̂�0�=b�0� and B̄
ˆ �0�= B̄�0�.

From �6� it follows then

��2b̂�0� = − �B̄ˆ �0� · ��u ,

��2b̂�1� = − ie � �u � B̄
ˆ �0�� − �B̄ˆ �1� · ��u . �13�

We put now u=���, where � denotes a vector potential

satisfying � ·�=0; further �=�� �̃ with � · �̃=0, which
implies

u = − �2�̃ . �14�

From �13� with u expressed in this way we conclude

b̂�0� =
1

�
�B̄ˆ �0� · ���̃ ,

b̂�1� =
1

�
�ie � ��̃ � B̄

ˆ �0�� − �B̄ˆ �1� · ���̃� . �15�

Putting in the above sense also Ê= Ê�0�+kÊ�1�, we find

Ê�0� =
1

�
u � �B̄ˆ �0� · ���̃ ,

Ê�1� = −
1

�
�ie � �u � ��̃ � B̄

ˆ �0��� + u � �B̄ˆ �1� · ���̃� .

�16�

We compare this with what follows from �10� in this ex-
pansion,

Ê�0� = − ���B̄ˆ �0� − �e · B̄
ˆ �0��e� ,

Ê�1� = − i�e � B̄
ˆ �0� − ���B̄ˆ �1� − �e · B̄

ˆ �1��e� . �17�

In this way we obtain first

�� = −
1

�
�u � �g · ���̃� · g ,
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� = −
1

�
�u · �̃ − �h · u��h · �̃�� , �18�

where g and h are unit vectors in the directions of B̄
ˆ �0�

− �e · B̄
ˆ �0��e and e� B̄

ˆ �0�, respectively. Of course, �� and �
cannot really depend on these directions, and we may aver-
age the two expressions for �� with g= �1,0 ,0� and g
= �0,1 ,0� and likewise those for � with h= �1,0 ,0� and h
= �0,1 ,0�. This yields

�� =
1

2�
u · �� � �̃� ,

� = −
1

2�
�u · �̃ + �e · u��e · �̃�� . �19�

The result for �� can also be written in the form

�� =
1

2�
u · � =

1

2�
� · �� � �� . �20�

In agreement with our remarks in the Introduction, the �
effect is not determined by the average of the kinetic helicity
u ·� but by the related but different quantity u ·�, that is,
some kind of mean helicity of the vector potential �.

D. A specific flow

We elaborate now on the above result for �� for flow
patterns similar to those that have been considered in the
context of the aforementioned homogeneous two-scale dy-
namo experiment �38�. To define the flow first in a single cell
like those depicted in Fig. 2 we introduce a cylindrical coor-
dinate system �r ,� ,z� with r=0 in the middle of this cell and
z as in the Cartesian system used above. We put then

ur = 0 everywhere,

u� = 0, uz = u in r 	 r1,

u� = 0, uz = 0 in r1 � r � r2,

u� = �r, uz = ��a/2 in r2 	 r 	 r3, �21�

with � and � being constants. The full flow pattern is defined
by continuation of that in the considered cell to the other
cells such that the flow always has different signs in two
adjacent cells. Thinking of the “central channels” and the
“helical channels” of the device of Müller and Stieglitz, we
label the flow regions r	r1 and r2	r	r3 by C and H,
respectively. Clearly, finite kinetic helicity exists only in H,
and only for nonzero �. Note that, in contrast to the situation
depicted in Fig. 1, here the kinetic helicity is non-negative as
long as � is positive.

For the flow defined in this way quantities like u ·� or
u ·� depend on u and �. In the following, we express u by
the flow rate VC of fluid through the cross section 0	r	r1
at a given z, and � by the flow rate VH of fluid through a
meridional surface defined by r2	r	r3 and 0	z	a and a
given �. As can be easily verified we have then

u · � = c�VH
2 , �22�

with some positive quantity c depending on r2, r3, and a. For
u ·� it is important that the part of the vector potential �
resulting from the flow in the region C of a given cell does
not vanish in H, and likewise the part resulting from the flow
in H does not vanish in C. Moreover, the parts of � resulting
from flows in other cells have to be taken into account. Con-
sidering these aspects, we may conclude that

u · � = �c1VC + �c2VH�VH �23�

with nonzero quantities c1 and c2 depending on r1, r2, r3, and
a.

Clearly, u ·� and, according to �20�, �� remain in general
different from zero if the flow loses its kinetic helicity, that
is, as u ·�, or �, vanishes. This implies the possibility of
�-effect dynamos without kinetic helicity.

III. NUMERICAL EXAMPLES OF �-EFFECT DYNAMOS
WITH AND WITHOUT KINETIC HELICITY

In our above calculations of �� and � an approximation
in the spirit of the second-order correlation approximation
has been used. The results are reliable only if a suitably
defined magnetic Reynolds number is much smaller than
unity. This can also be expressed by requiring that the nor-

malized flow rates ṼC=VC /�a and ṼH=VH /�a show this
property. In addition we have assumed weak variations of the
mean magnetic field in the z direction; more precisely, �
=k /a�1.

In order to confirm the existence of �-effect dynamos
without kinetic helicity in an independent way and to check
whether it occurs only under the mentioned conditions or
over a wider range of parameters, Eq. �1� with the flow de-
fined by �21� has been solved numerically. The same numeri-
cal method as in RB03 has been used.

In Table I and Fig. 3 some numerically determined dimen-

sionless flow rates ṼC and ṼH are given for marginal dynamo
states. For case �i� a nonzero kinetic helicity was chosen, for
the cases �ii� and �iii� zero kinetic helicity. The marginal
modes turned out to be nonoscillatory. Note that the param-
eters for case �i�, 2r1 /a=2r2 /a=0.5, 2r3 /a=1, �=0.228, and

FIG. 2. A single cell of the modified Roberts flow.
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�=0.9, are realistic values in view of the dynamo device of
Müller and Stieglitz �38�. In cases �i� and �ii� the regions C
and H have a common surface. In order to make sure that
there is no effect of an artificial kinetic helicity due to the
restricted numerical resolution at this surface, in case �iii� a
clear separation of these two regions was considered.

As long as the kinetic helicity in H does not vanish, that
is, ��0, the dynamo works even with VC=0, that is, zero
flow in C. In the absence of kinetic helicity, �=0, the dynamo
works, too, as long as VC and therefore u ·� are different
from zero. However, the dynamo disappears if, in addition to
�, also VC and so u ·� vanish. This is plausible since then
choices of the coordinate origin x=0 are possible such that
u�x� and −u�−x� coincide. In this case, usually referred to as
“parity invariant,” any � effect can be excluded.

The dissipation of the mean magnetic field grows with �.
For this reason the dynamo threshold grows with �, too.

IV. CONCLUSIONS

We have examined a modified version of the Roberts dy-
namo with a steady fluid flow as it was considered in the
context of the dynamo experiment of Müller and Stieglitz.
By contrast to what might be suggested by simple explana-
tions of this dynamo, the necessary deviation of the flow
from reflectional symmetry is not adequately described by
the kinetic helicity u ·� of the fluid flow or its average u ·�.
Dynamo action with steady fluid flow requires in truth a
deviation which is indicated by a nonzero value of the quan-
tity u ·�, where � is the vector potential of u. Even if the
kinetic helicity is equal to zero everywhere, dynamo action
occurs if only the quantity u ·�, the helicity of the vector
potential of the flow, is unequal to zero. This fact is not
surprising in light of the general findings of mean-field elec-
trodynamics.

We stress that our result does not mean that the quantity
u ·� is in general more fundamental for the � effect and its
dynamo action than u ·�. In cases with steady fluid flow
indeed u ·� is crucial. However, with flows varying rapidly
in time, the crucial quantity is u ·�.

Both the mean kinetic helicity u ·� and the quantity u ·�
are determined by the helicity spectrum of the flow. That is,
the Roberts dynamo does not work with a zero kinetic helic-
ity spectrum. In this sense the situation is different from that
in the interesting example of an �-effect dynamo given by
Gilbert et al. �30�, which works with a very special non-
steady flow for which the kinetic helicity spectrum is indeed
zero.

Looking back at the experiment of Müller and Stieglitz
we may state that a modified �technically perhaps more com-
plex� version without kinetic helicity of the fluid flow should
show the dynamo effect, too. As Table I exemplifies, how-
ever, the kinetic helicity can well reduce the dynamo thresh-
old. In that sense we may modify the title of the paper of
Gilbert et al. and say: Helicity is unnecessary for Roberts
dynamos—but it helps.
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